
The effect of entanglements in rubber 
elasticity 

S. F. Edwards and Th. Vilgis 
Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE, UK 
(Received 9 May 1985) 

This paper presents a theory of rubber elasticity based on the concept of entanglements. It is shown that for 
small deformation the molecular mechanism of stretching is dominated by the slippage of chains. Hardening 
of the rubber at a high deformation is due to inextensibility as described by the tube concept. This free energy 
of deformation agrees well with experiment. The resulting free energy is 
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where ~ is a measure of the inextensibility and ~/of the slippage, Nc is the number of crosslinks and N~ the 
number of slip links. 
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INTRODUCTION 

This paper attempts to improve the present theories of 
rubber elasticity by a detailed treatment of the 
consequences of entanglements. They form further elastic 
free energy which gives results which are in quite good 
agreement with experimental observations. Discussion of 
the various models of rubber elasticity in the literature are 
concerned with the calculation of the modulus in certain 
typical situations and models ~. Most molecular theories 
produce a typical sum of square of the extension ratios, 
F~kT~3=t22  for the form of the free energy, but in 
comparison with the experiments this 'sum of squares law' 
is not good enough to explain the departures from the 
linear behaviour 2. For incompressible material 
F '~22+22  -I and the force like 2- )°  -2, and the well 
known Mooney Rivlin plot, which plots (force)/(2- 2-2) 
against 1/2 gives a straight line while the experiments 
show a softening in the low deformation regime and a 
hardening in the high deformation regime. This softening 
effect is phenomenologically represented by adding the 
second invariant of the stress tensor to the sum of squares 
free energy 2, but this procedure has no molecular basis 
since it does not correspond to any molecular model. In a 
single chain representation an explanation for the 
hardening at higher deformation was offered by the early 
calculation of Kuhn and collaborators 3, who showed that 
the entropic force becomes singular if the chain is fully 
stretched. However a simple study of chain extension 
shows that far too large an extension is required to bring 
this mechanism into action. 

What conditions are given by a real rubber system? 
Since a real crosslinked system is very dense we are not 

able to argue as if we had a single chain limit, because 
every chain is constrained by the other chains in the 
environment. These constraints may be assumed to be 
purely entropic in nature, since this is in accordance to 
experiments 2. In polymer dynamics the constraints can be 
successfully modelled by the reptation tube 4 and give 
quite good results of viscoelastic properties of polymeric 
melts. In the static theory of rubber elasticity these 
constraints are given by the slip link picture 5 which gives a 
correction to the usual expression of the free energy due to 
the possibility of slipping by the entanglements between 
two crosslinks. The stretched rubber has more space for 
slippage than the unstretched, hence the entropy 
increases; the experimental data in the small deformation 
regime can be explained by this model as has been shown 
recently by Thirion and Weil 6. 

What about the tube constraint in a crosslinked 
system? Here we may argue in the same manner as in the 
case of viscoelasticity. Crosslinking in the melt fixes the 
topology of the polymer system 7 and so the tube is fixed 
also. In the equilibrium state, i.e. no deformation, the tube 
can be established by the primitive path concept 8, and the 
slip length of this primitive path (which can be understood 
as the centre of the tube) is given by the fixed number of 
entanglements between two crosslinks and so by the 
concentration of material present. The path length of the 
polymer is clearly larger as the path length of the tube (see 
Figure 2), so that a large amount of the real chain is 'slack'. 

If we deform the rubber system the tube will always get 
longer 9 ; we can only deform until all the slack is used up. 
Thereafter there is no free polymer present, the polymer is 
taut and no further conformations of the constrained 
polymer are available. Therefore the number of 
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configurations tends to unity and this gives rise to the 
hardening in the high deformation limit. This happens 
long before the extension, which would fully extend the 
polymer between crosslinks, for now only the polymer 
between entanglements need be fully extended. Both 
effects have the same origin. We should then be able to 
bring both regimes together in order to calculate a free 
energy from which we can deduce an equation of state 
which can be used for experimental analysis of various 
properties of rubbers. 

These effects of entanglements will now be discussed in 
more detail. In the next section we will give a discussion of 
the slip link model by means of a simple Flory segment 
argument rather than the replica calculation of Ball et al. 5. 
In the third section we discuss the tube model for rubbers 
in order to obtain the high deformation limit and the finite 
extensibility. Both deformation regimes are connected in 
section 4 using differe~:t scales of the Rouse model to 
define the tube and the slippage. A brief discussion of the 
resulting free energy and the resulting force and 
discussion with experiments will be given in section 5. 

THE FLORY SEGMENT ARGUMENT FOR THE 
SLIP LINK FREE ENERGY 

The classical theory of rubber elasticity contains the 
unrealistic assumption that the chains can pass through 
each other (i.e. see ref. 2 and references therein). The only 
constraints are the crosslinks which held the phantom 
chains together. The classical theories of rubber elasticity 
also neglect repulsive forces which give rise to the bulk 
modulus l°. 

In this paper the material will also be considered 
incompressible so we use also a density constraint rather 
than repulsive forces. We will deal with the pure slip link 
contribution to the rubber elasticity. 

In a recent paper the effect of the slip link was calculated 
by means of the replica trick (Ball et al.5). The slip link 
concept is a simplification of the real entanglement 
constraint which replaces the 'real' situation 

0 Q 

0 

by a simpler situation 4'5'~1 

Edwards and Th. Vilgis 

in which the ring can move along the chains by an arc 
length a. 

The total number of slip links (assumed to be given) will 
occur as a parameter in the theory, which can be estimated 
from the plateau modulus. This problem can be calculated 
using the replica trick in order of averaging the free energy 
according to a number of frozen degrees of the freedom 
represented by the crosslinks 7. 

Assuming that the chains are Gaussian they can be 
expressed by the Wiener representation: 

L 

,Jexp t 
0 

(2.1) 

where ,J~ is the normalization and R(s)  the locus of a 
chain in the intrinsic representation. If we have chains 
Ri(s~) where s i labels the ith link the crosslinks are given 
by 

R i(s{) = R~(sj) (2.2) 

i.e. there is a constraint 

1-I 6(R,(~)- R)(s})) (2.3) 
crosslinks 

present in the partition integrals of the problem. If the link 
slips by an amount a then the constraint has between 
s i __+ a on chain i and sj_+ a on chainj. The problem is that si 
is permanent but the condition is now 

+ a  -Fa 

dej6(Ri(~ + el) - R j(s~ + e j)) 4a 2 
- - a  - - a  

(2.4) 

To build in these constraints is a difficult task and the 
replica method used by Deam and Edwards 7 for 
crosslinks and Ball et al. 5 for slip links offers a clean way 
to do the problem, but does have heavy algebraic 
complexity. Therefore in this paper we use the much 
cruder method of Flory, which will give the essential 
features, although by ignoring fluctuations this is well 
known to overestimate the free energy by a factor of 2. 

If there are no slip links, it was shown by Deam and 
Edwards 7 that the result of the replica method is that 
given by James and Guth for the phantom network 
with all its suspect properties of collapsing etc. Hence the 
minimum of 

3 

F = k . T  Z )'~ (2.5) 
i = l  

is given by 21-= 0 without  any further constraint. 
We wish in this paper to present a crude but 

nevertheless adequate theory to cover not only the 
slippage but also the inextensibility. How can we do this? 
It turns out that generalizing the very simplest model of 
rubber elasticity, that of Flory's affine deformation of 
crosslinks model, can be very instructive. To see this we go 
back to the elementary expression for the probability 
distribution for a Gaussian chain 

f 3 "~3/2 ( 3R  z ]  
(2.6) 
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which is separable into the three cartesian axis 

3 

P(R) = 1-I P(Xs) (2.6a) 
i = l  

We perform the integral over the slippage e. The odd 
terms in e vanish and we are left with the even terms. We 
call for a moment ~+](de/2a)e2=~ and find for the 
probability P(2iX I) 

with 

In the theory cited above we introduced the slip link 
constraint by a modified crosslink which allows the 
slippage along the arc length of the polymer. We try to 
model the slip link process by the following integral 

3X 2 ) 
exp - -  

: p 
P(Xi)=) d~ (~) ~ 2 1 ( L ~  (2.7) 

while e is the slippage and P(e) is the probability of the arc 
length of the slippage. For simplicity we use for the 
probability distribution P(e) a rectangular one and we 
rewrite equation (2.7) as 

3 2 2 ,z l(_3"~2(V22XZ~2 
P(2iX')=' "exp{-2fLZ2iXi }{l+-~ 2\2lL] \ , ' ' ]  

5[ 3 \ 3 ) ,  2 2 15 
--~21~)i~_. , q X  i 4 - ~  (2.101 

We calculate the free energy by the usual equation 

F(~) = - f d3R P(R,L)log P()~R,L) (2.11) 

where P(R,/) is the distribution function of the 
undeformed state. Since we are working only to order e 2 
we can use the usual Gaussian for P(R,L). 

Performing the integration given in equation (2.11) we 
find 

+ a  

d~ 

- -a  

1 3 ~ ( /  3 ",2 

2,_," 8/~ ( \ , = ,  ] 

3 3 } 
+ 2Z;4-10Z; {+15 

i = 1  i = l  

This integral must have the property that is normalized 
for every value of e. 

It is not easy to maintain the normalization unless we 
are able to construct an 'effective Gaussian' form for the 
result of this intregration. After changing X~2~X~ we 
expand equation (2.8).)~ are the principal values of the 
deformation tensor 

(2.11a) 

If we compare this with the result given by the rigorous 
calculation (Ball et al. 51 

F 1 ~ 12~(1+q) )? 
= ~ i ~ - i + q ~ i  2 ~-Iog(1 +~/),/2)) (2.12t 

+ a  

de, _ ~ i ~ 2 2 X ~ ( 1  e fe \2~ p(21Xi)= f,,f~aaeXp{ 3 3 

- - a  

- ~ ( L - 2 ~ 2 )  } (2.9) 

for averaging the slippage we expand each of the 
exponentials in e and e 2  and find 

+a 
de 3 3 

--a 

We see (after some algebra) that equation (2.11a) fits the 
exact result equation (2.12) to order ()~i- 112 if we require 
for ~/= e2/L,rl is a measure for the slippage. 

We have now shown that the result of the calculation 
can be modelled by a simple Flory segment argument, 
provided that a factor ½ is included to allow for non-affine 
deformation of the links. It is well known that the Flory 
argument gives twice the correct value and the paper of 
Ball et al. s produces the correct front factor. 

For crosslinks, of course, we get the same formula 
because a crosslink has zero slip, so that in this limit the 
slip link behaves as a crosslink: 

3 

F - - ½ Z 2  ~ (2.131 
i = 1  

The final free energy of the total system is given by the sum 

3 f), 2¢1 
F=½Nc ;d+½NsZ +"t ~- log(l + r/;,~)} (2.141 

This free energy has been used by Thirion and Weil 6 to 
analyse data in deformed rubbers and they find good 
agreement with this theory. We can also use equation 
(2.14) to calculate the force in maximal stretching (using 
the incompressibility condition H,;~i= 1 and hence the 
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3 

¢" 

No+N, 

Nc 

)x "1 

Mooney-Rivlin plot of t he reduced force f * / ( 2 -  2 - 2) versus Figure 1 
)~ - ~ from equation (2.14). (1) Network in which the entanglements act as 
crosslinks with zero slip (r/= 0). (2) Real situation ignoring inextensibility 
(here with r/=0.2) a number given by the replica theory (Ball et al.5). (3) 
Phantom network with a vanishing number slip links, or more realistic, 
entangled network (Ns~0) but large slippage IF/~o~). 

minimum of F =2 + 22 -2 is now at 2 = 1) which gives 

f=NcD+N~(_l+222 1 D2 +~/)) 
(2 +r/) 2 4-1/(1 .+~/22)(2 

where  D = , ~ - 2  -2  which is conveniently plotted in the 
Mooney-Rivlin representation f / ( 2 -  2-  2), 2-1. For a 
discussion of the influence of the parameter we fix the ratio 
NJN~ by a condition N~ + N¢ = 1. In Figure 1 we see the 
various ranges involved. 

We can see the good agreement with any experimental 
observations for a low deformation, and the completely 
wrong behaviour in the high deformation regime, where a 
sharp rise of the force is expected as in Figure 4 below. 

So we now go to an analysis suggested by the idea of the 
tube (which is formed by the entanglements and therefore 
the slip links) which implies the finite extensibility of the 
chains. 

INEXTENSIBILITY 

Measurements of the force-extension relationship of 
rubbers show large deformations with a sharp upturn 
before the fracture of the sample. Let us first assume a very 
dilute system for illustration. Consider a single ideal chain 
under external force. In the low deformation regime the 
force must be linear in the elongation which is consistent 
with the simple Gaussian theory of rubber elasticity. At 
higher deformation this approximation fails since the 
conformation of the chain is no longer Gaussian. For this 
purpose Kuhn and Gruen 3 noted that the finite 
extensibility of the single chain in this model is expressed 
by using the inverse Langevin function to calculate the 
force of a single chain 

, ,3,, 

which has the properties of the linearity for r,~ L and a 
singularity for r=L. The physical reason for this 
singularity is given by the fact that at full extension no 
further conformation for the chain is available so that 
the probability function goes to zero, unlike the Gaussian 
distribution function. 

Extending this idea of Kuhn and Gruen to a network of 
such chains gives rise to the non-Gaussian theory of 
rubber elasticity with a singularity of the force at 

, 1 / 2  

Amax = ~ T  ~ 

for the dilute regime (see ref. 2). The quantity (L/l) is the 
number of statistical segments of the polymer chain which 
is extremely large so that the maximum extensibility is 
much too large for a real system. 

We therefore go first to the dense regime of a melt. The 
viscoelastic properties of a polymer have been extensively 
studied and many of their properties can be explained by 
the concept of a tube generated by the other chains 
surrounding any one polymer. For details of the tube 
concept see refs. 9, 11 and 12. In this paragraph we apply 
the concept of the tube to the problem of rubber elasticity 
in the non-dilute regime. Therefore, when we crosslink the 
melt we fix the topology of this dense highly entangled 
polymer system, and we can argue that there is a 
topological skeleton of the system consisting of the tubes 
containing each polymer. We can make the tube precise 
by the concept of the primitive path which can be 
understood as the centre of this tube (see also ref. 8) 
representing the dense crosslinked system by the situation 
given in Figure 2. In this Figure the dots represent other 
chains perpendicular to the paper plane. The 
entanglements define the primitive path as a random walk 
of step length a while the real path of the polymer is much 
larger than the primitive path. The reference chain is 
assumed to be crosslinked at the endpoints so that no 
reptation is possible and the tube is fixed in space. If the 
primitive path is long enough it can be modelled by a 
random walk and its end to end distance is given by 

( R25 = Nppa 2 = Lppa (3.2) 

where Npp is the number of primitive path segments, a the 
step length and Lpp the contour length of the primitive 
path. Since the end-to-end distance of the real polymer 
and the primitive path are the same, we obtain the relation 

Nova 2 = NI 2 

! ) o~~ o o ° 

--- o o "  % 

Figure 2 Primitive path model for a crosslinked polymer chain. The 
circles are chains perpendicular to the paper plane. The dashed line is the 
centre of the tube (the primitive path, a random walk with the step length 
a). The polymer is given by the continuous line, and has a much larger 
contour as the primitive path 
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The chain length is 
Npp 

(3.3) L = Lpp + ~ A~ (3.9) 
i = l  

and from these two equations we are able to calculate the 
probability distribution of the primitive path 

(3.1 O) 

d i  = 1 

where L is the length of the polymer chain and I the step 
length of the polymer random walk. 

The difference L -  Lpp of the arc length has gone into 
the slack which forms the deviations from the primitive 
path. At the deformation process the primitive path length 
is increased, and the difference (L-Lpp) becomes smaller 
as some amount of the slack is removed. The deformation 
then can be increased until all the slack is used up. The 
deformation of the primitive path length is given by: 

/ 3 \ 1 ,/2 

~p=~i~=2~) /~p (3.4, 

which is the Jacobian of a deformed vector R'(s) (the 
tangent vector along the path). The maximum extension is 
then given by the case of full exhaustion of the slack: 

/ 3 ",~ 1/2 

0 ~--- L - -  L p p ~ i  =~ ";' 21 )max (3.5) 

From this it follows that, in a dense system, the maximum 
elongation is not given by the properties of the total chain, 
but by the amount of chain in the slack per step of the 
primitive path. This interesting fact can also be used to 
determine the tube diameter a in crosslinked systems by 
measuring the maximum elongation according to 
equation (3.5). 

How can we bring these intuitive ideas into more 
elaborate mathematics? The mathematical definition of 
the tube constraint can be modelled by various methods. 
The most obvious way is to add a harmonic constraint to 
the Wiener integral and calculate the properties of 

Lpp 

(exp{-- f 
0 

(3.6) 

where Lpp is the tube length between two crosslinks, r(s) is 
the real path of the polymer and the tube is given by 
R(sl/a), the factor l/a'* is chosen so that the tube diameter 
((R(sl/a) - r(s)) 2) = a 2. Similar ideas for the definition of 
the tube are considered in the next paragraph. 

Here we restrict our considerations on the statistics of 
the slack and estimate the probability distribution of the 
primitive path. 

It is well known that the probability distribution of the 
slack is given by 12-15 

(3.7) 

We model the rubber chain by Npp primitive path steps 
and Npp excursions or slack with an arc length A i. The 
joint probability of the slack in each segment is then given 
by 

[ 1 \Npp ( I 3 
(3.8) 

First we evaluate this integral after the usual 
parametrization of the 6-function 

i °d7 Vi = I d A i  ~ooNvp 

- ~  (3.111 

xexp  - Ao +i7 L - L p p -  ~ A i  
i =  I i = 1 

o r  

P(L, Lpp)= i v d7 ei;"L-t-ppl I 
2n (1 + iTAo) Npp 

- o o  

This can be written as 

(3.12) 

e(L, Lpp) = ~ ff~'zn, exp {i 7 (L -  Lpp) - -  Npp log (1 -~" iyAo)} 

steepest 

and since Npp is very large, this can be approximated by 
the method of steepest descent value, giving 

1 { (L-Lpp-AoNpp)2~ 
P(L,Lpp)-Ao(Npp2rt)l/2 exp 2-Np-~°2 ~ (3.14) 

Defining 

and replacing 

Lpp = L - Nppa (3.15) 

1 
Npp = ~ -  (L - Lpp) (3.16) 

za o 

the above probability function can be written as 

1 exp( (L-Lpp)2_'~ P(L'Lpp)=A1/2(L-Lpp)I/2 2Ao(L- Lpp)J 

(3.17) 

From the equations (3.3) and (3.15) we can estimate 
(./2 

A 0 = ~ - - a  (3.18) 

So in our representation the amount of slack chain is not 
exactly a random walk with mean square end-to-end 
distance a 2 and arc length A o. This can be true as long as 
the chain does not leave the tube by this procedure. As 
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long as (a/l)>> 1 we get Ao.~a2/l and the final answer is 
given by equation (3.17). 

If we take the full expression of A 0 according to 
equation (3.19) we find 

P"L_ILpp  exp{ - (Lpp- Lpp)2] 2(L_ Lpp)2; (3.19) 

the singularity in the same place, but with a rather 
different structure. 

The form of equation (3.17) has been given by 
Edwards 8. Calculating the resulting free energy with the 
aid of equation (2.11) we find for the free energy, dropping 
all deformation independent terms: 

F=~Nc 
0~ 3 2 1/2 

) ) 
(3.20) 

with z =  1, 2 according to equation (3.17) or (3.19). 
The parameter ~ is given by 

,3:, ,  

The resulting force of this free energy has been studied by 
Vilgis and Kilian ~6, and there it was found that it fitted 
large deformation data with the parameter ~ being about  
0.1 for commercial rubbers. 

The Mooney plot of this model in uniaxial extension is 
given in Figure 3 and we see the correct behaviour for 
large extensions but it is wrong at low deformations. 

From these two different considerations we learn the 
following: The complete deformation behaviour of 
rubbers could be understood in the total range of 
deformation by basically the same model. In the low 
deformation regime the entanglements are responsible for 

Figure 3 Principal Mooney-Rivlin plot of the force resulting from 
equation (3.20) with z = 1 

the softening due to the slippage process, for high 
deformations the tube constraint correctly quantifies 
inextensibility. 

In the next section we put together a more detailed 
model which connects both processes in order to calculate 
the final free energy of a deformed rubber. 

THE USE OF ROUSE MODES IN M O D E L L I N G  
RUBBER ELASTICITY 

As we have now seen entanglements can explain the 
behaviour for both deformation regimes. We want to use 
the concept of the tube, generated by the entanglements, 
to bring both deformation regimes together. The problem 
in this stage is then to find an amenable mathematical 
formulation for the tube. A convenient way is to use the 
dynamics of a single chain. The most simple case is the 
dynamics of an isolated chain, first given in the famous 
paper by Rouse 17. Consider first a diffusing particle, the 
long time motion of which is governed by the diffusion 
equation 

g, - oVz}P(Qx, t) = 0 (4.1) 

If a potential is xesent, say V(x), the equilibrium 
distribution will be given by 

P o = era- v~l, fl - 1 = kB T 

This modifies equation (4.1) to 

{ 8 , -  D ~ O - ~  + fl~-~)}P = 0 (4.2, 

which is a kind of Fokker-Planck equation. 
In the case of a single chain, the equilibrium 

distribution is given by 

L 
3 ~3r 2 

,o[r . ( s ) ]=~Pexp{-~fdS(~ss)  } (4.3) 
a 

and the exponent acts as a potential so we write for the 
diffusion equation 

L 

0 

(4.4) 

which is the Rouse equation, represented in the 
continuous notation by a functional differential equation. 
It is more convenient to write it in terms of the Rouse 
modes which are the Fourier transform of r(s). Strictly 
speaking there is a boundary condition for the dynamics 
of a single chain with free ends, but for our purposes it is 
valid to use the familiar complex (i.e. cyclical) notation 

r.,(s)= ~ eiqsr.q (4.5) 
q = l  

Substituting this in the above equations the equilibrium 
function reads 

3 1 ~ 2 7 ,2 ]  
Po({rq}) = ~g" exp -----21 2n q2"= 1 q I ql J( (4.6) 
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and in terms of the Rouse modes one has 

(3 3q 2 
(4.7) 

This equation is quite useful because different length 
scales, represented by q, can be studied separately. It is 
worth noting that equation (4.7) can be solved exactly by 
transforming it to Hermite's equation so the similarity to 
the harmonic oscillator will be recognized. This equation 
will now be used to divide the problem into two length 
scales, and it will be used also to define new length scales 
which should be introduced to the problem. For this 
purpose we look at the physical meaning of equation (4.5). 
r(s) defines the path of the polymer in real space. Since all 
Fourier components are present (the range of q goes to 
infinity) this is a function which is capable of being 
arbitrarily abrupt in its changes of direction. If we now 
delete the range of q values, and consider 

qu 

R(S) = Z rq eiqs ( 4 . 8 )  

q = l  

we smooth the path and remove changes over a scale 
s<qo 1. The resulting curve can be identified with the 
primitive path provided that qo is taken to a value 
proportional to a-~. Notice that in the Rouse equation the 
different q modes are associated with damping of time 
,,~q- 1. Thus we can find z over which modes qZ > 1/r are 
excited but q2 < 1/~ are not. If we take z to be qo z in effect 
we can effect the cut off of equation (4.8). We propose then 
to take the joint probability of the primitive path and the 
polymer to be the joint probability of an initial path 
Rl (q<qo)  and a final path R2(q<qo) which is the value 
taken after the time ~. For q>qoR(q) is free all the time. 

Therefore, we need to solve the Rouse equation under 
the condition that the polymer at t = 0  has a form R~(q) 
and at t = z has the form R2(q). We therefore transform the 
Rouse equation to Hermite's equation by the ansatz: 

P({rq})=exp{-~3~q ,rqlZq2tQ({rq} ) (4.9) 

The resulting equation for Q is precisely the equation for a 
harmonic oscillator 

[~?_D{~orqO?;_o 1_(3~ 2 3 1 2]7 0 
_ _ 4 \ 2 l j  q2lr'lZ+~nn2q ~ J Q =  

(4.10) 

The Green function to this equation is well known x8 and 
is given by 

Hf Dq2t 3/2 
Q( { B~ , '~ z I ) = ,q, \ sin~q2 t J 

x exp{ - ½ ~  (Rff' + R22)c°sh2s~nh D-~DqZt- 2R-q'R" 2 J ~ 

(4.11) 

The final solution of the Rouse equation is given by 
putting equations (4.9) and (4.11) together. We now 
choose the time z so that the mean distance( (R ~ - Rzq) 2) 
is given by the tube diameter a 2 and bring this new length 
scale into the problem by putting 

Dq 2z = (q/qo) (4.12) 

This relates qo to the tube diameter by 

l I I  
- -qo  ~ ---- 
a o a  

(4.13) 

the same expression given by the mean value of the arc 
length of the slack A0 in equation (3.18). 

Having defined the new length scale we are now able to 
rewrite the solution of the Rouse equation in the following 
form 

p(r,R,q) ~exp{  _ ½ ~ 3 2 2 ) 
q=qo~q ]rq] I 

x G(rq,Rq) exp ~q2[Rq] (4.14) 
q = l  1 

where we are now using rq for the polymer instead of R 1 
and R q for the primitive~ath instead of R2. 

The first term is the probability distribution for the 
modes of a free polymer. The second term correlates those 
modes having q<qo with the primitive path Rq. The 
primitive path itself has only modes q < %, and these have 
the distribution of the third term, i.e. that of the first qo 
modes of a free polymer. If we integrate out all Rq we must 
be left with a free polymer; if we integrate out all the rq we 
must be left with the first qo modes of a free polymer, i.e. 

P[Rq] = fd[rq]P([r_q,Rq,qo]) 

= ~exp~ 3 1 ~ 2 2 ] 
2[[ 21~q~=1 q [R-q I 

and 

P[5]  = faiR.] P([rq,Rq,qo ]) 

{ 3 ;  ~'~ q2lro,2 } =. ! e x p  21 _~ 
q -  

(4.16) 

With these equations we can now express and modify 
inextensibility and slippage. 

As we have seen in the previous sections there is a 
catastrophe in the entropy at a certain deformation. In 
our equations above there is no singularity in the mean 
entropy given by 

/ 3  1 ~o q2lRq[2) (4.17) 

How can we model this singularity? As shown above the 
difference between the primitive path and the real path is 
the important concept. Calculating the mean entropy 
using equations (4.15) and (4.16) the ratio is given by 

S([R]) 
=~t (4.18) s([q) a 

There are many possible models (including of course 
the exact Langevin) but we want a representation which is 
amenable to calculations but contains the essential 
feature of inextensibility. The simplest model with the 
singularity is 

L 

( 3 (" R '2 +yR,,2 t e[8] =Nexp - /Jdsi-C 
0 

(4.19) 
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where the normalization ,,/ff is complicated and will be 
discussed after equation (4.21). We have added a bending 
potential ]~R "2 due to chain stiffness 19 which guarantees 
the existence of the Wiener integral for the 'worm-like 
chain'. This corresponds to the following equation 

where h(q,Rq) is the functional derivative of the exponent 
given in equation (4.19). The difficulty is now to calculate 
the functional integral given by equation (4.19). The 
easiest Way to do this is to replace R 2 in the denominator 
by its mean value in a self consistent manner; we write the 
equation (4.19) as 

= 3 R '2 

~ H(4.21 ) 

where the normalization is now included to be consistent 
with the model and calculate the mean value ofR 'z by the 
equation : 

( t f~ds(3 R'2,z>~_?R2 ) , ,  6RR'Z(s)exp - 1 - - ~  
/ D 1 2 X  d ~. , , J  \ / I f( :;;>+, )} 6Rexp - ds i ~R"2 

. . . .  - ~ (4.22) 

Having adopted this model, because we are working in the 
range of q<qo we can now drop the factor 7R "2 which 
guaranteed the existence of our chosen form by damping 
the large q modes, since they are omitted anyway with the 
q < qo condition. From equation (4.22) we get 

If we now calculate the entropy under deformation by aid 
of equation (2.11) and replacing R(s)=~ R(s) 

and we get the final answer 

R '2 

-<~ 

H(1 - <8'~>) 
$ 

-J~dS l._.~<; R'2> ~ 
x log"  " ~ - 

1-I(1 ,~ ,2 -<,.~ 8 >) 
s 

Evaluating this integral in the finite q < qo condition we 
get 

ex" S ~ 3 q2lRql2 ] 
r _  

F = J I I d G  ~i~2~o~ ~ 

E q  2 (2Rq) 2 
3 q ~~ 

x 21 1--q2012~22 
- l o g o  - leq2Z22) } 

(4.24) 

which gives a singularity determined by the factor as given 
in the rough model in the third section. Nevertheless the 
type of the singularity is not quite the same, and the 
precise shape dependence does depend on the model. This, 
however, is not central to our argument, which is to find a 
simple model of the singularity. Now we must include 
slippage which we do with the same arguments given in 
the second section now using the form of the path integral. 
As we have seen the probability function for the slippage 
was given by 

t 3Rt 
131 exp~ 21(-~a) J 3 

i= lH P(R,L,a)= i=111 (_}3nl(L +a))l/2 (4.25) 

This function is equivalent to the continuous model 

L + a  p(R,L+a)=f~R(s)exp{-3f R'2(s)ds} (4.26) 

0 

If we assume a to be smaller than L, we can expand this to 
give 

P " e x p { - ~  (1 L--~a~+a/L)2R'2L2~j (4.27) 

which can be rewritten as a path integral 

L 

P(R,L)= f a~(s)f~8(s)exp{-3fg'2(s)(l+~'s))) 
-q<~r(s)<<.q 0 

(4.28) 

where function ~ (s) characterizes the slip lin% Combining 
then we arrive at the final probability distribution 

P =  f a~(s)fDR-(s)exp{-3f (l+~(s)) 1 -R'2(S)(R'2(s)) ds} 

- q  <~ t(s) <~ q path  

(4.29) 

The final resulting free energy for the slip links is given by 

(i= 1(( 1 -- ~2E)~2)(1 + q )  2) 
i 

+ log(1 + r/2~)} 

+ log 2 (4.30) 
, =  

According to Ball et al. 5 we have to add the contribution 
of pure crosslinks also. This is the same expression as 
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above with t/= 0 and we have finally 

F~=½N¢ '~ i - ~ Y ~ - ~ ' l ° g ( l - ~ x 2  ~ ) ' 2 ) l  (4.31) 

! '- TY '=' " 
so that the full free energy of the network is given by 

F = F~ + Fs (4.32) 

DISCUSSION OF THE RESULTS 

In this section we want to compare this final result given 
by equations (4.30)-(4.32) with experiment. 

Calculating the force in uniaxial extension we arrive at 

N ~(l +rl)(l_c(2)ct2Df )+2 12_~_x~ fs= 

+ (1 + r/)+2)2 (2 +r/) 2 

2 1 o;+ 

+~il +~;?)(~ +,) 
(5.1) 

for the slip links. The functions D and (h are given by 

2 ¢ = 2 2 + 7  
A 

z) d~ 
d2 

(5.2) 

For the crosslink contribution we have 

D f 1 - -  (~2  
(5.3) 

+ 

0 . 5 ~  

I 
0.5 
x-i 

Mooney plot of the force from the above analysis, f *  is Figure 4 
normalized by N s + N  c while the parameters are chosen to be a=0 .1  
and r/=0.2. The curve with zero Mooney slope is given by r/large (here 
~/=5) 

and the total force is given by 

f = f  +f~ 

It is quite common to plot the reduced force f*/D 
against 2-1 which gives Figure 4. In this principal figure 
we have chosen r/= 0.2, which was calculated by Ball et 
al, 5, and 0(= 0.1, an inextensibility which has been found 
for many rubbers t6. We see the principal features of the 
force. To make the phenomenology complete we should 
mention that the number of slip links can be estimated 
from the plateau modulus and so related to the tube 
dimensions (see equation (6.1)). This estimation 
(depending on fabrication conditions) gives values of Nc 
comparable with the number of crosslinks (cf ref. 6). 

There is also an interesting fact contained in these 
results; namely that the slippage depends on the 
concentration of polymer present. If we swell the system r/ 
becomes larger because the amount of phase space is 
increased. Swelling in a good solvent implies that the 
'chain contacts' are reduced: 

Dry S w o l l e n  

So if we put q ~ 1/C 2 we can see that r/gets larger. Large ~/ 
values affect the deformation behaviour as given in Figure 
4 and we find in the experiment results that the Mooney- 
Rivlin slope reaches its minimum value C2-+0 (cf Figure 
4). 

2.8 

2.4 

'E 
E 

Z 

2.6 v 

1 I I 
0.2 0.4 0.6 0.8 

X-I 

Figure 5 Stres~stra in  data of natural  rubber according to Mullins 21. 
The solid line is calculated by the aid of equations (5.1)-(5.3) using the 
parameters NckaT= 1.2 N m m -  a, NskaT= 2.1 N m m -  2, q = 0.2, 
:t - t ___ }+max = 7.5 
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As an experimental example we show a fit to 
experimental data of Mullins 2~ in Fioure 5. In this 
example we have used the theoretical value for q (= 0.2) as 
given by Ball et al. s Looking at equations (62) and (63) 
from the same reference, N~ and N~ can be found 
approximately from the small deformation regime, while ct 
is found at large deformations. This has been treated also 
by Vilgis and Kilian ~6 and hence the applications on the 
dependence on the deformation mode are here also 
applicable. For a complete characterization of a rubber, 
more information is necessary, nevertheless it is possible 
with this theory. This characterization starts with the 
estimation of the number of entanglements by measuring 
the plateau modulus of the melt before crosslinking. This 
gives also the ratio all by the relaxation times (see ref. 20) 
which determines the inextensibility. If the rubber is then 
crosslinked (in the melt) the topology and so Ns are fixed. 
N~ is then known by the amount of added crosslink 
molecules (if all react). The amount of slip determines then 
q which has been estimated to be r/= 0.2 from theory and 
q = 0.4 from Thirion and Weil's work 6. 

CONCLUSION 

As we have seen from the discussion in the previous 
section the equation of state is able to explain the 
deformation behaviour of rubbers over the total range of 
deformation. Nevertheless, there remains some work to be 
done to relate all the quantities used in the theory as 
parameters (for simplicity). This should be possible since 
we used only one basic molecular model--the 
entanglement. 

In the theoretical model given by the replica 
calculation, q is a fixed value but this cannot be true for 
real situation in a network (see the experimental work of 
Thirion and Weil 6. Since q is a measurement for the slip it 
can be related to the length between two crosslinks, since 
this is the maximum value of slip (see Ball et al.S). The 
other quantity ((l/a) 2) is very difficult to calculate (this can 
probably be done by computer), but it is also strongly 
related to polymer dynamics. As shown by Graessley 2° 
and Doi and Edwards 4 this quantity occurs also in the 
reptation time and is therefore related to the relaxation 
behaviour of the system. 

However, the problem of relating N~ and N c to 
measurable quantities of the network fabrication still 
remains. Assuming a homogeneous network and defining 
c~ as the concentration of the crosslinks and c as the 
concentration of polymer chains, then the number of slip 
links can be estimated by use of the plateau modulus 

Edwards and Th. Vilgis 

Ns= \Cx + 2c ]al 2 
(6.1) 

Nc 
C X ~ - -  

V 

where V is the total volume. 
Since the parameters ~ and r/are caused by the same 

mechanism they should be of the same order: a=r/. 
However, in all equations of the free energy etc. 6 2 always 
appears so that, for example, in the free energy one has the 
leading term 

-  2)(1 + 

It follows that, since 6 2 ~ Y] a positive slope will always be 
found in the Mooney plot which is in accord with all 
experiments. 
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